nnlojet is hosted by Hepforge, IPPP Durham
nnlojet is hosted by Hepforge, IPPP Durham

NNLOJET manual

\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\TextOrMath }[2]{#2}\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\newcommand {\LWRsubmultirow }[2][]{#2}\) \(\newcommand {\LWRmultirow }[2][]{\LWRsubmultirow }\) \(\newcommand {\multirow }[2][]{\LWRmultirow }\) \(\newcommand {\mrowcell }{}\) \(\newcommand {\mcolrowcell }{}\) \(\newcommand {\STneed }[1]{}\) \(\newcommand {\toprule }[1][]{\hline }\) \(\let \midrule \toprule \) \(\let \bottomrule \toprule \) \(\def \LWRbooktabscmidruleparen (#1)#2{}\) \(\newcommand {\LWRbooktabscmidrulenoparen }[1]{}\) \(\newcommand {\cmidrule }[1][]{\ifnextchar (\LWRbooktabscmidruleparen \LWRbooktabscmidrulenoparen }\) \(\newcommand {\morecmidrules }{}\) \(\newcommand {\specialrule }[3]{\hline }\) \(\newcommand {\addlinespace }[1][]{}\) \(\newcommand {\LWRoverlaysymbols }[2]{\mathord {\smash {\mathop {#2\strut }\limits ^{\smash {\lower 3ex{#1}}}}\strut }}\) \(\def\alphaup{\unicode{x03B1}}\) \(\def\betaup{\unicode{x03B2}}\) \(\def\varbetaup{\unicode{x03D0}}\) \(\def\gammaup{\unicode{x03B3}}\) \(\def\digammaup{\unicode{x03DD}}\) \(\def\deltaup{\unicode{x03B4}}\) \(\def\epsilonup{\unicode{x03F5}}\) \(\def\varepsilonup{\unicode{x03B5}}\) \(\def\zetaup{\unicode{x03B6}}\) \(\def\etaup{\unicode{x03B7}}\) \(\def\thetaup{\unicode{x03B8}}\) \(\def\varthetaup{\unicode{x03D1}}\) \(\def\iotaup{\unicode{x03B9}}\) \(\def\kappaup{\unicode{x03BA}}\) \(\def\varkappaup{\unicode{x03F0}}\) \(\def\lambdaup{\unicode{x03BB}}\) \(\def\muup{\unicode{x03BC}}\) \(\def\nuup{\unicode{x03BD}}\) \(\def\xiup{\unicode{x03BE}}\) \(\def\omicronup{\unicode{x03BF}}\) \(\def\piup{\unicode{x03C0}}\) \(\def\varpiup{\unicode{x03D6}}\) \(\def\rhoup{\unicode{x03C1}}\) \(\def\varrhoup{\unicode{x03F1}}\) \(\def\sigmaup{\unicode{x03C3}}\) \(\def\varsigmaup{\unicode{x03C2}}\) \(\def\tauup{\unicode{x03C4}}\) \(\def\upsilonup{\unicode{x03C5}}\) \(\def\phiup{\unicode{x03D5}}\) \(\def\varphiup{\unicode{x03C6}}\) \(\def\chiup{\unicode{x03C7}}\) \(\def\psiup{\unicode{x03C8}}\) \(\def\omegaup{\unicode{x03C9}}\) \(\def\Alphaup{\unicode{x0391}}\) \(\def\Betaup{\unicode{x0392}}\) \(\def\Gammaup{\unicode{x0393}}\) \(\def\Digammaup{\unicode{x03DC}}\) \(\def\Deltaup{\unicode{x0394}}\) \(\def\Epsilonup{\unicode{x0395}}\) \(\def\Zetaup{\unicode{x0396}}\) \(\def\Etaup{\unicode{x0397}}\) \(\def\Thetaup{\unicode{x0398}}\) \(\def\Varthetaup{\unicode{x03F4}}\) \(\def\Iotaup{\unicode{x0399}}\) \(\def\Kappaup{\unicode{x039A}}\) \(\def\Lambdaup{\unicode{x039B}}\) \(\def\Muup{\unicode{x039C}}\) \(\def\Nuup{\unicode{x039D}}\) \(\def\Xiup{\unicode{x039E}}\) \(\def\Omicronup{\unicode{x039F}}\) \(\def\Piup{\unicode{x03A0}}\) \(\def\Varpiup{\unicode{x03D6}}\) \(\def\Rhoup{\unicode{x03A1}}\) \(\def\Sigmaup{\unicode{x03A3}}\) \(\def\Tauup{\unicode{x03A4}}\) \(\def\Upsilonup{\unicode{x03A5}}\) \(\def\Phiup{\unicode{x03A6}}\) \(\def\Chiup{\unicode{x03A7}}\) \(\def\Psiup{\unicode{x03A8}}\) \(\def\Omegaup{\unicode{x03A9}}\) \(\def\alphait{\unicode{x1D6FC}}\) \(\def\betait{\unicode{x1D6FD}}\) \(\def\varbetait{\unicode{x03D0}}\) \(\def\gammait{\unicode{x1D6FE}}\) \(\def\digammait{\mathit{\unicode{x03DD}}}\) \(\def\deltait{\unicode{x1D6FF}}\) \(\def\epsilonit{\unicode{x1D716}}\) \(\def\varepsilonit{\unicode{x1D700}}\) \(\def\zetait{\unicode{x1D701}}\) \(\def\etait{\unicode{x1D702}}\) \(\def\thetait{\unicode{x1D703}}\) \(\def\varthetait{\unicode{x1D717}}\) \(\def\iotait{\unicode{x1D704}}\) \(\def\kappait{\unicode{x1D705}}\) \(\def\varkappait{\unicode{x1D718}}\) \(\def\lambdait{\unicode{x1D706}}\) \(\def\muit{\unicode{x1D707}}\) \(\def\nuit{\unicode{x1D708}}\) \(\def\xiit{\unicode{x1D709}}\) \(\def\omicronit{\unicode{x1D70A}}\) \(\def\piit{\unicode{x1D70B}}\) \(\def\varpiit{\unicode{x1D71B}}\) \(\def\rhoit{\unicode{x1D70C}}\) \(\def\varrhoit{\unicode{x1D71A}}\) \(\def\sigmait{\unicode{x1D70E}}\) \(\def\varsigmait{\unicode{x1D70D}}\) \(\def\tauit{\unicode{x1D70F}}\) \(\def\upsilonit{\unicode{x1D710}}\) \(\def\phiit{\unicode{x1D719}}\) \(\def\varphiit{\unicode{x1D711}}\) \(\def\chiit{\unicode{x1D712}}\) \(\def\psiit{\unicode{x1D713}}\) \(\def\omegait{\unicode{x1D714}}\) \(\def\Alphait{\unicode{x1D6E2}}\) \(\def\Betait{\unicode{x1D6E3}}\) \(\def\Gammait{\unicode{x1D6E4}}\) \(\def\Digammait{\mathit{\unicode{x03DC}}}\) \(\def\Deltait{\unicode{x1D6E5}}\) \(\def\Epsilonit{\unicode{x1D6E6}}\) \(\def\Zetait{\unicode{x1D6E7}}\) \(\def\Etait{\unicode{x1D6E8}}\) \(\def\Thetait{\unicode{x1D6E9}}\) \(\def\Varthetait{\unicode{x1D6F3}}\) \(\def\Iotait{\unicode{x1D6EA}}\) \(\def\Kappait{\unicode{x1D6EB}}\) \(\def\Lambdait{\unicode{x1D6EC}}\) \(\def\Muit{\unicode{x1D6ED}}\) \(\def\Nuit{\unicode{x1D6EE}}\) \(\def\Xiit{\unicode{x1D6EF}}\) \(\def\Omicronit{\unicode{x1D6F0}}\) \(\def\Piit{\unicode{x1D6F1}}\) \(\def\Rhoit{\unicode{x1D6F2}}\) \(\def\Sigmait{\unicode{x1D6F4}}\) \(\def\Tauit{\unicode{x1D6F5}}\) \(\def\Upsilonit{\unicode{x1D6F6}}\) \(\def\Phiit{\unicode{x1D6F7}}\) \(\def\Chiit{\unicode{x1D6F8}}\) \(\def\Psiit{\unicode{x1D6F9}}\) \(\def\Omegait{\unicode{x1D6FA}}\) \(\let \digammaup \Digammaup \) \(\renewcommand {\digammait }{\mathit {\digammaup }}\) \(\newcommand {\smallin }{\mathrel {\unicode {x220A}}}\) \(\newcommand {\smallowns }{\mathrel {\unicode {x220D}}}\) \(\newcommand {\notsmallin }{\mathrel {\LWRoverlaysymbols {/}{\unicode {x220A}}}}\) \(\newcommand {\notsmallowns }{\mathrel {\LWRoverlaysymbols {/}{\unicode {x220D}}}}\) \(\newcommand {\rightangle }{\mathord {\unicode {x221F}}}\) \(\newcommand {\intclockwise }{\mathop {\unicode {x2231}}\limits }\) \(\newcommand {\ointclockwise }{\mathop {\unicode {x2232}}\limits }\) \(\newcommand {\ointctrclockwise }{\mathop {\unicode {x2233}}\limits }\) \(\newcommand {\oiint }{\mathop {\unicode {x222F}}\limits }\) \(\newcommand {\oiiint }{\mathop {\unicode {x2230}}\limits }\) \(\newcommand {\ddag }{\unicode {x2021}}\) \(\newcommand {\P }{\unicode {x00B6}}\) \(\newcommand {\copyright }{\unicode {x00A9}}\) \(\newcommand {\dag }{\unicode {x2020}}\) \(\newcommand {\pounds }{\unicode {x00A3}}\) \(\newcommand {\iddots }{\mathinner {\unicode {x22F0}}}\) \(\newcommand {\utimes }{\mathbin {\overline {\times }}}\) \(\newcommand {\dtimes }{\mathbin {\underline {\times }}}\) \(\newcommand {\udtimes }{\mathbin {\overline {\underline {\times }}}}\) \(\newcommand {\leftwave }{\left \{}\) \(\newcommand {\rightwave }{\right \}}\)

References

  • [1]  A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, Antenna subtraction at NNLO, JHEP 09, 056 (2005), doi:10.1088/1126-6708/2005/09/056, [hep-ph/0505111].

  • [2]  A. Daleo, T. Gehrmann and D. Maitre, Antenna subtraction with hadronic initial states, JHEP 04, 016 (2007), doi:10.1088/1126-6708/2007/04/016, [hep-ph/0612257].

  • [3]  J. Currie, E. W. N. Glover and S. Wells, Infrared Structure at NNLO Using Antenna Subtraction, JHEP 04, 066 (2013), doi:10.1007/JHEP04(2013)066, [1301.4693].

  • [4]  S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427, 161 (1998), doi:10.1016/S0370-2693(98)00332-3, [hep-ph/9802439].

  • [5]  J. M. Campbell and E. W. N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B 527, 264 (1998), doi:10.1016/S0550-3213(98)00295-8, [hep-ph/9710255].

  • [6]  S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B 570, 287 (2000), doi:10.1016/S0550-3213(99)00778-6, [hep-ph/9908523].

  • [7]  S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591, 435 (2000), doi:10.1016/S0550-3213(00)00572-1, [hep-ph/0007142].

  • [8]  D. A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B 563, 477 (1999), doi:10.1016/S0550-3213(99)00583-0, [hep-ph/9903515].

  • [9]  Z. Bern, V. Del Duca, W. B. Kilgore and C. R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60, 116001 (1999), doi:10.1103/PhysRevD.60.116001, [hep-ph/9903516].

  • [10]  A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, Infrared structure of \(e^+e^-\to \) 2 jets at NNLO, Nucl. Phys. B 691, 195 (2004), doi:10.1016/j.nuclphysb.2004.05.017, [hep-ph/0403057].

  • [11]  A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett. B 612, 36 (2005), doi:10.1016/j.physletb.2005.02.039, [hep-ph/0501291].

  • [12]  A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B 612, 49 (2005), doi:10.1016/j.physletb.2005.03.003, [hep-ph/0502110].

  • [13]  D. A. Kosower, Multiple singular emission in gauge theories, Phys. Rev. D 67, 116003 (2003), doi:10.1103/PhysRevD.67.116003, [hep-ph/0212097].

  • [14]  A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01, 118 (2010), doi:10.1007/JHEP01(2010)118, [0912.0374].

  • [15]  T. Gehrmann and P. F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12, 049 (2011), doi:10.1007/JHEP12(2011)049, [1107.4037].

  • [16]  R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02, 098 (2011), doi:10.1007/JHEP02(2011)098, [1011.6631].

  • [17]  A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP 10, 047 (2012), doi:10.1007/JHEP10(2012)047, [1207.5779].

  • [18]  X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss and M. Marcoli, Automation of antenna subtraction in colour space: gluonic processes, JHEP 10, 099 (2022), doi:10.1007/JHEP10(2022)099, [2203.13531].

  • [19]  T. Gehrmann, E. W. N. Glover and M. Marcoli, The colourful antenna subtraction method, JHEP 03, 114 (2024), doi:10.1007/JHEP03(2024)114, [2310.19757].

  • [20]  T. Gehrmann et al., Jet cross sections and transverse momentum distributions with NNLOJET, PoS RADCOR2017, 074 (2018), doi:10.22323/1.290.0074, [1801.06415].

  • [21]  G. P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput. Phys. 27, 192 (1978), doi:10.1016/0021-9991(78)90004-9.

  • [22]  E. W. N. Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06, 096 (2010), doi:10.1007/JHEP06(2010)096, [1003.2824].

  • [23]  J. Campbell and T. Neumann, Precision Phenomenology with MCFM, JHEP 12, 034 (2019), doi:10.1007/JHEP12(2019)034, [1909.09117].

  • [24]  J. M. Campbell and R. K. Ellis, Next-to-Leading Order Corrections to \(W+2\) Jet and \(Z+2\) Jet Production at Hadron Colliders, Phys. Rev. D 65, 113007 (2002), doi:10.1103/PhysRevD.65.113007, [hep-ph/0202176].

  • [25]  E. Remiddi and J. A. M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15, 725 (2000), doi:10.1142/S0217751X00000367, [hep-ph/9905237].

  • [26]  T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun. 141, 296 (2001), doi:10.1016/S0010-4655(01)00411-8, [hep-ph/0107173].

  • [27]  T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun. 144, 200 (2002), doi:10.1016/S0010-4655(02)00139-X, [hep-ph/0111255].

  • [28]  S. Bühler and C. Duhr, CHAPLIN - Complex Harmonic Polylogarithms in Fortran, Comput. Phys. Commun. 185, 2703 (2014), doi:10.1016/j.cpc.2014.05.022, [1106.5739].

  • [29]  A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr and G. Watt, LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75, 132 (2015), doi:10.1140/epjc/s10052-015-3318-8, [1412.7420].

  • [30]  A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover and G. Heinrich, NNLO corrections to event shapes in \(e^+ e^-\) annihilation, JHEP 12, 094 (2007), doi:10.1088/1126-6708/2007/12/094, [0711.4711].

  • [31]  A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover and G. Heinrich, EERAD3: Event shapes and jet rates in electron-positron annihilation at order \(\alpha _s^3\), Comput. Phys. Commun. 185, 3331 (2014), doi:10.1016/j.cpc.2014.07.024, [1402.4140].

  • [32]  T. Gehrmann, E. W. N. Glover, A. Huss, J. Niehues and H. Zhang, NNLO QCD corrections to event orientation in \(e^+ e^-\) annihilation, Phys. Lett. B 775, 185 (2017), doi:10.1016/j.physletb.2017.10.069, [1709.01097].

  • [33]  K. Hagiwara and D. Zeppenfeld, Amplitudes for Multiparton Processes Involving a Current at \(e^+ e^-\), \(e^\pm p\) and Hadron Colliders, Nucl. Phys. B 313, 560 (1989), doi:10.1016/0550-3213(89)90397-0.

  • [34]  F. A. Berends, W. T. Giele and H. Kuijf, Exact Expressions for Processes Involving a Vector Boson and Up to Five Partons, Nucl. Phys. B 321, 39 (1989), doi:10.1016/0550-3213(89)90242-3.

  • [35]  Z. Bern, L. J. Dixon and D. A. Kosower, One loop amplitudes for \(e^+ e^-\) to four partons, Nucl. Phys. B 513, 3 (1998), doi:10.1016/S0550-3213(97)00703-7, [hep-ph/9708239].

  • [36]  L. W. Garland, T. Gehrmann, E. W. N. Glover, A. Koukoutsakis and E. Remiddi, The Two loop QCD matrix element for \(e^+e^-\to \) 3 jets, Nucl. Phys. B 627, 107 (2002), doi:10.1016/S0550-3213(02)00057-3, [hep-ph/0112081].

  • [37]  L. W. Garland, T. Gehrmann, E. W. N. Glover, A. Koukoutsakis and E. Remiddi, Two loop QCD helicity amplitudes for \(e^+e^-\to \) 3 jets, Nucl. Phys. B 642, 227 (2002), doi:10.1016/S0550-3213(02)00627-2, [hep-ph/0206067].

  • [38]  T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point functions, Nucl. Phys. B 640, 379 (2002), doi:10.1016/S0550-3213(02)00569-2, [hep-ph/0207020].

  • [39]  T. Gehrmann and L. Tancredi, Two-loop QCD helicity amplitudes for \(q\bar q \to W^\pm \gamma \) and \(q\bar q \to Z^0 \gamma \), JHEP 02, 004 (2012), doi:10.1007/JHEP02(2012)004, [1112.1531].

  • [40]  O. Biebel, Experimental tests of the strong interaction and its energy dependence in electron positron annihilation, Phys. Rept. 340, 165 (2001), doi:10.1016/S0370-1573(00)00072-7.

  • [41]  J. Currie, T. Gehrmann, A. Huss and J. Niehues, NNLO QCD corrections to jet production in deep inelastic scattering, JHEP 07, 018 (2017), doi:10.1007/JHEP07(2017)018, [Erratum: JHEP 12, 042 (2020)], [1703.05977].

  • [42]  J. Niehues and D. M. Walker, NNLO QCD Corrections to Jet Production in Charged Current Deep Inelastic Scattering, Phys. Lett. B 788, 243 (2019), doi:10.1016/j.physletb.2018.11.025, [1807.02529].

  • [43]  T. Gehrmann, A. Huss, J. Mo and J. Niehues, Second-order QCD corrections to event shape distributions in deep inelastic scattering, Eur. Phys. J. C 79(12), 1022 (2019), doi:10.1140/epjc/s10052-019-7528-3, [1909.02760].

  • [44]  A. Gehrmann-De Ridder, E. W. N. Glover and J. Pires, Real-Virtual corrections for gluon scattering at NNLO, JHEP 02, 141 (2012), doi:10.1007/JHEP02(2012)141, [1112.3613].

  • [45]  A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover and J. Pires, Double Virtual corrections for gluon scattering at NNLO, JHEP 02, 026 (2013), doi:10.1007/JHEP02(2013)026, [1211.2710].

  • [46]  J. Currie, E. W. N. Glover and J. Pires, Next-to-Next-to Leading Order QCD Predictions for Single Jet Inclusive Production at the LHC, Phys. Rev. Lett. 118(7), 072002 (2017), doi:10.1103/PhysRevLett.118.072002, [1611.01460].

  • [47]  J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and J. Pires, Precise predictions for dijet production at the LHC, Phys. Rev. Lett. 119(15), 152001 (2017), doi:10.1103/PhysRevLett.119.152001, [1705.10271].

  • [48]  A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and J. Pires, Triple Differential Dijet Cross Section at the LHC, Phys. Rev. Lett. 123(10), 102001 (2019), doi:10.1103/PhysRevLett.123.102001, [1905.09047].

  • [49]  X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss and J. Mo, NNLO QCD corrections in full colour for jet production observables at the LHC, JHEP 09, 025 (2022), doi:10.1007/JHEP09(2022)025, [2204.10173].

  • [50]  X. Chen, T. Gehrmann, E. W. N. Glover and J. Mo, Antenna subtraction for jet production observables in full colour at NNLO, JHEP 10, 040 (2022), doi:10.1007/JHEP10(2022)040, [2208.02115].

  • [51]  F. A. Berends and W. T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys. B 306, 759 (1988), doi:10.1016/0550-3213(88)90442-7.

  • [52]  M. L. Mangano and S. J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200, 301 (1991), doi:10.1016/0370-1573(91)90091-Y, [hep-th/0509223].

  • [53]  J. Kuijf, Multiparton production at hadron colliders, Ph.D. thesis, Leiden (1991).

  • [54]  Z. Bern, L. J. Dixon and D. A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70, 2677 (1993), doi:10.1103/PhysRevLett.70.2677, [hep-ph/9302280].

  • [55]  Z. Bern, L. J. Dixon and D. A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys. B 437, 259 (1995), doi:10.1016/0550-3213(94)00542-M, [hep-ph/9409393].

  • [56]  Z. Kunszt, A. Signer and Z. Trocsanyi, One loop radiative corrections to the helicity amplitudes of QCD processes involving four quarks and one gluon, Phys. Lett. B 336, 529 (1994), doi:10.1016/0370-2693(94)90568-1, [hep-ph/9405386].

  • [57]  A. Signer, Helicity method for next-to-leading order corrections in QCD, Ph.D. thesis, ETH Zurich (1995).

  • [58]  C. Anastasiou, E. W. N. Glover, C. Oleari and M. E. Tejeda-Yeomans, Two loop QCD corrections to massless quark gluon scattering, Nucl. Phys. B 605, 486 (2001), doi:10.1016/S0550-3213(01)00195-X, [hep-ph/0101304].

  • [59]  E. W. N. Glover, C. Oleari and M. E. Tejeda-Yeomans, Two loop QCD corrections to gluon-gluon scattering, Nucl. Phys. B 605, 467 (2001), doi:10.1016/S0550-3213(01)00210-3, [hep-ph/0102201].

  • [60]  E. W. N. Glover and M. E. Tejeda-Yeomans, One loop QCD corrections to gluon-gluon scattering at NNLO, JHEP 05, 010 (2001), doi:10.1088/1126-6708/2001/05/010, [hep-ph/0104178].

  • [61]  C. Anastasiou, E. W. N. Glover, C. Oleari and M. E. Tejeda-Yeomans, Two-loop QCD corrections to the scattering of massless distinct quarks, Nucl. Phys. B 601, 318 (2001), doi:10.1016/S0550-3213(01)00079-7, [hep-ph/0010212].

  • [62]  C. Anastasiou, E. W. N. Glover, C. Oleari and M. E. Tejeda-Yeomans, Two loop QCD corrections to massless identical quark scattering, Nucl. Phys. B 601, 341 (2001), doi:10.1016/S0550-3213(01)00080-3, [hep-ph/0011094].

  • [63]  C. Anastasiou, E. W. N. Glover, C. Oleari and M. E. Tejeda-Yeomans, One loop QCD corrections to quark scattering at NNLO, Phys. Lett. B 506, 59 (2001), doi:10.1016/S0370-2693(01)00356-2, [hep-ph/0012007].

  • [64]  J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and J. Pires, Infrared sensitivity of single jet inclusive production at hadron colliders, JHEP 10, 155 (2018), doi:10.1007/JHEP10(2018)155, [1807.03692].

  • [65]  A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and T. A. Morgan, Precise QCD predictions for the production of a Z boson in association with a hadronic jet, Phys. Rev. Lett. 117(2), 022001 (2016), doi:10.1103/PhysRevLett.117.022001, [1507.02850].

  • [66]  A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and T. A. Morgan, The NNLO QCD corrections to Z boson production at large transverse momentum, JHEP 07, 133 (2016), doi:10.1007/JHEP07(2016)133, [1605.04295].

  • [67]  A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and T. A. Morgan, NNLO QCD corrections for Drell-Yan \(p_T^Z\) and \(\phi ^*\) observables at the LHC, JHEP 11, 094 (2016), doi:10.1007/JHEP11(2016)094, [Erratum: JHEP 10, 126 (2018)], [1610.01843].

  • [68]  R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover and A. Huss, Precise predictions for the angular coefficients in Z-boson production at the LHC, JHEP 11, 003 (2017), doi:10.1007/JHEP11(2017)003, [1708.00008].

  • [69]  A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and D. M. Walker, Vector Boson Production in Association with a Jet at Forward Rapidities, Eur. Phys. J. C 79(6), 526 (2019), doi:10.1140/epjc/s10052-019-7010-2, [1901.11041].

  • [70]  R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss, I. Majer and A. Rodriguez Garcia, Transverse momentum distributions in low-mass Drell-Yan lepton pair production at NNLO QCD, Phys. Lett. B 829, 137111 (2022), doi:10.1016/j.physletb.2022.137111, [2110.15839].

  • [71]  A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss, C. T. Preuss and D. M. Walker, Precision phenomenology with fiducial cross sections in the triple-differential Drell-Yan process, JHEP 05, 002 (2023), doi:10.1007/JHEP05(2023)002, [2301.11827].

  • [72]  A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and D. M. Walker, Next-to-Next-to-Leading-Order QCD Corrections to the Transverse Momentum Distribution of Weak Gauge Bosons, Phys. Rev. Lett. 120(12), 122001 (2018), doi:10.1103/PhysRevLett.120.122001, [1712.07543].

  • [73]  S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429, 369 (1998), doi:10.1016/S0370-2693(98)00454-7, [hep-ph/9801442].

  • [74]  K. Koller, T. F. Walsh and P. M. Zerwas, Testing QCD: Direct Photons in \(e^+ e^-\) Collisions, Z. Phys. C 2, 197 (1979), doi:10.1007/BF01474661.

  • [75]  X. Chen, T. Gehrmann, N. Glover, M. Höfer and A. Huss, Isolated photon and photon+jet production at NNLO QCD accuracy, JHEP 04, 166 (2020), doi:10.1007/JHEP04(2020)166, [1904.01044].

  • [76]  X. Chen, T. Gehrmann, E. W. N. Glover, M. Höfer, A. Huss and R. Schürmann, Single photon production at hadron colliders at NNLO QCD with realistic photon isolation, JHEP 08, 094 (2022), doi:10.1007/JHEP08(2022)094, [2205.01516].

  • [77]  L. Bourhis, M. Fontannaz and J. P. Guillet, Quarks and gluon fragmentation functions into photons, Eur. Phys. J. C 2, 529 (1998), doi:10.1007/s100520050158, [hep-ph/9704447].

  • [78]  T. Gehrmann, E. W. N. Glover, A. Huss and J. Whitehead, Scale and isolation sensitivity of diphoton distributions at the LHC, JHEP 01, 108 (2021), doi:10.1007/JHEP01(2021)108, [2009.11310].

  • [79]  V. Del Duca, W. B. Kilgore and F. Maltoni, Multiphoton amplitudes for next-to-leading order QCD, Nucl. Phys. B 566, 252 (2000), doi:10.1016/S0550-3213(99)00663-X, [hep-ph/9910253].

  • [80]  A. Signer, One loop corrections to five parton amplitudes with external photons, Phys. Lett. B 357, 204 (1995), doi:10.1016/0370-2693(95)00905-Z, [hep-ph/9507442].

  • [81]  C. Anastasiou, E. W. N. Glover and M. E. Tejeda-Yeomans, Two loop QED and QCD corrections to massless fermion boson scattering, Nucl. Phys. B 629, 255 (2002), doi:10.1016/S0550-3213(02)00140-2, [hep-ph/0201274].

  • [82]  J. M. Campbell and C. Williams, Triphoton production at hadron colliders, Phys. Rev. D 89(11), 113001 (2014), doi:10.1103/PhysRevD.89.113001, [1403.2641].

  • [83]  X. Chen, T. Gehrmann, E. W. N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett. B 740, 147 (2015), doi:10.1016/j.physletb.2014.11.021, [1408.5325].

  • [84]  M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Remarks on Higgs Boson Interactions with Nucleons, Phys. Lett. B 78, 443 (1978), doi:10.1016/0370-2693(78)90481-1.

  • [85]  F. Wilczek, Decays of Heavy Vector Mesons Into Higgs Particles, Phys. Rev. Lett. 39, 1304 (1977), doi:10.1103/PhysRevLett.39.1304.

  • [86]  V. Del Duca, A. Frizzo and F. Maltoni, Higgs boson production in association with three jets, JHEP 05, 064 (2004), doi:10.1088/1126-6708/2004/05/064, [hep-ph/0404013].

  • [87]  L. J. Dixon and Y. Sofianatos, Analytic one-loop amplitudes for a Higgs boson plus four partons, JHEP 08, 058 (2009), doi:10.1088/1126-6708/2009/08/058, [0906.0008].

  • [88]  S. Badger, E. W. N. Glover, P. Mastrolia and C. Williams, One-loop Higgs plus four gluon amplitudes: Full analytic results, JHEP 01, 036 (2010), doi:10.1007/JHEP01(2010)036, [0909.4475].

  • [89]  S. Badger, J. M. Campbell, R. K. Ellis and C. Williams, Analytic results for the one-loop NMHV Hqqgg amplitude, JHEP 12, 035 (2009), doi:10.1088/1126-6708/2009/12/035, [0910.4481].

  • [90]  T. Gehrmann, M. Jaquier, E. W. N. Glover and A. Koukoutsakis, Two-Loop QCD Corrections to the Helicity Amplitudes for \(H \to \) 3 partons, JHEP 02, 056 (2012), doi:10.1007/JHEP02(2012)056, [1112.3554].

  • [91]  X. Chen, J. Cruz-Martinez, T. Gehrmann, E. W. N. Glover and M. Jaquier, NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10, 066 (2016), doi:10.1007/JHEP10(2016)066, [1607.08817].

  • [92]  X. Chen, T. Gehrmann, E. W. N. Glover and A. Huss, Fiducial cross sections for the four-lepton decay mode in Higgs-plus-jet production up to NNLO QCD, JHEP 07, 052 (2019), doi:10.1007/JHEP07(2019)052, [1905.13738].

  • [93]  X. Chen, T. Gehrmann, E. W. N. Glover and A. Huss, Fiducial cross sections for the lepton-pair-plus-photon decay mode in Higgs production up to NNLO QCD, JHEP 01, 053 (2022), doi:10.1007/JHEP01(2022)053, [2111.02157].

  • [94]  M. Cacciari, G. P. Salam and G. Soyez, The anti-\(k_t\) jet clustering algorithm, JHEP 04, 063 (2008), doi:10.1088/1126-6708/2008/04/063, [0802.1189].

  • [95]  M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, In Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), pp. 270–279 (1998), [hep-ph/9907280].

  • [96]  S. D. Ellis and D. E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48, 3160 (1993), doi:10.1103/PhysRevD.48.3160, [hep-ph/9305266].

  • [97]  S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, Longitudinally invariant \(K_t\) clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406, 187 (1993), doi:10.1016/0550-3213(93)90166-M.

  • [98]  S. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock and B. R. Webber, New clustering algorithm for multi - jet cross-sections in e+ e- annihilation, Phys. Lett. B 269, 432 (1991), doi:10.1016/0370-2693(91)90196-W.

  • [99]  W. Bartel et al., Experimental Studies on Multi-Jet Production in \(e^+ e^-\) Annihilation at PETRA Energies, Z. Phys. C 33, 23 (1986), doi:10.1007/BF01410449.

  • [100]  F. Siegert, A practical guide to event generation for prompt photon production with Sherpa, J. Phys. G 44(4), 044007 (2017), doi:10.1088/1361-6471/aa5f29, [1611.07226].

  • [101]  D. Buskulic et al., First measurement of the quark to photon fragmentation function, Z. Phys. C 69, 365 (1996), doi:10.1007/BF02907417.

  • [102]  M. Tanabashi et al., Review of Particle Physics, Phys. Rev. D 98(3), 030001 (2018), doi:10.1103/PhysRevD.98.030001.

  • [103]  P. A. Zyla et al., Review of Particle Physics, PTEP 2020(8), 083C01 (2020), doi:10.1093/ptep/ptaa104.

  • [104]  A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, A. Huss and T. A. Morgan, NNLO QCD corrections for \(Z\) boson plus jet production, PoS RADCOR2015, 075 (2016), doi:10.22323/1.235.0075, [1601.04569].